

Bridging Archival Standards: Building Software to Translate Metadata Between PDS3 & PDS4

Planetary Science Informatics and Data Analytics Conference

St. Louis, MO -- April 25, 2018

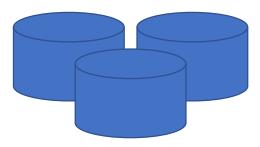
Cristina M. De Cesare cristina.m.decesare@jpl.nasa.gov Lead Mission Interface, PDS Imaging Node Jet Propulsion Laboratory, California Institute of Technology

Challenges of translating between PDS3 & PDS4

A Solution: The Label Mapping Tool

What it does & how it works

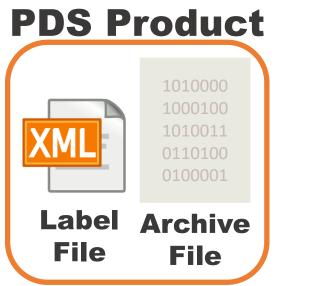
Challenges of translating between PDS3 & PDS4


A Solution: The Label Mapping Tool

What it does & how it works

What are PDS and PDS4?

The **Planetary Data System** (PDS) is NASA's repository for the distribution and long term preservation of NASA planetary data.


The **PDS Archive** is the digital data repository maintained by PDS.

The **PDS Standard** are requirements and constraints designed to ensure the usability of data in the PDS Archive throughout the lifetime of the archive.

PDS4 is the latest version of the PDS Standard. (PDS4 is **not** a data format.)

PDS Labels

- A file containing PDS metadata is called a **PDS Label.**
- A PDS label, along with the file or files that it describes, constitute a **PDS Product**.

Challenges of translating between PDS3 & PDS4

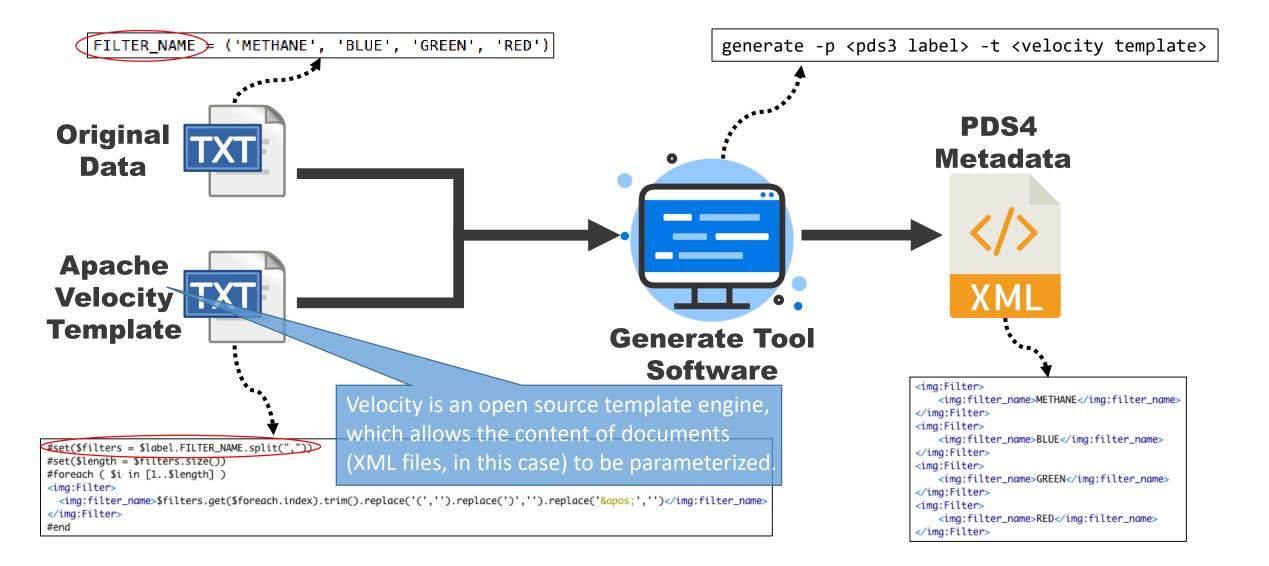
A Solution: The Label Mapping Tool

What it does & how it works

Labels in PDS3 vs. PDS4

Old Standard: PDS3	New standard: PDS4
Object Description Language (ODL) text file	XML (Extensible Markup Language) file
"keyword = value" syntax, inconsistent document structure	Standardized syntax & structure, defined by PDS Information Model (IM)
Difficult to enforce standards & best practices	XML validation provides enforcement of complex data relationships, rules & standards.
Inconsistent implementation → Negative impact on usability & interoperability	Improved metadata consistency → Improved accessibility & usability of archived data

PDS3 Label Example


OBJECT LINES LINE_SAMPLES SAMPLE_TYPE LINE_PREFIX_BYTES LINE_SUFFIX_BYTES SAMPLE_BITS SAMPLE_BITS SAMPLE_BIT_MASK MD5_CHECKSUM END_OBJECT

- = IMAGE
- = 2048
- = 1648
- = UNSIGNED_INTEGER
- = 0
- = 0
- = 8
- = 2#11111111#
 - = "80f6b30f5686b7e8c60032ab9044d91f"
 - = IMAGE

PDS4 Label Example

```
<File_Area_Observational>
   <File>
        <file_name>JNCE_2011238_00A00002_V01.IMG</file_name>
        <local_identifier>DATA_FILE</local_identifier>
        <creation date time>2016-10-27T14:36:37</creation date time>
        <file_size unit="byte">2520</file_size>
        <md5 checksum>80f6b30f5686b7e8c60032ab9044d91f</md5 checksum>
    </File>
   <Array_2D_Image>
        <local_identifier>jnce_2011238_00a00002_v01</local_identifier>
        <offset unit="byte">0</offset>
        <axes>2</axes>
        <axis_index_order>Last Index Fastest</axis_index_order>
        <Element_Array>
            <data_type>UnsignedMSB8</data_type>
            <unit>DN</unit>
        </Element_Array>
        <Axis_Array>
            <axis_name>Line</axis_name>
            <elements>2048</elements>
            <sequence_number>1</sequence_number>
        </Axis_Array>
        <Axis_Array>
            <axis_name>Sample</axis_name>
            <elements>1648</elements>
            <sequence_number>2</sequence_number>
        </Axis_Array>
   </Array_2D_Image>
</File_Area_Observational>
```

Translation between PDS3 & PDS4

The Problem

PDS3 → PDS4 translation is tedious & requires knowledge of the data!

But datasets need to be converted from PDS3 to PDS4.

- Legacy missions already archived in the PDS:
 - Mars Pathfinder
 - Phoenix
- Ongoing & upcoming missions still producing PDS3 ODL labels in their ground data processing pipelines:
 - MER
 - MSL
 - InSight
 - Mars 2020

Learning curve for PDS4 label development

- Small data providers lack personnel.
- Big "flagship" missions have a large volume of data, more complicated labels, etc.

Challenges of translating between PDS3 & PDS4

A Solution: The Label Mapping Tool

What it does & how it works

A Software Solution: PDS Label Mapping Tool (LMT)

New Python software developed by PDS IMG Node at JPL

Input:

- PDS3 ODL label file
- Velocity template file

An XPath is a reference to a specific location in an XML document.

Output:

• CSV file -- contains mappings between PDS3 keywords and equivalent PDS4 XPaths

PDS3 Vicar Group & Keyword	XPath
IMAGE.LINES	pds:File_Area_Observational/pds:Array_2D_Image/pds:Axis_Array[1]/pds:elements
IMAGE.LINE_SAMPLES	pds:File_Area_Observational/pds:Array_2D_Image/pds:Axis_Array[2]/pds:elements
IMAGE.MD5_CHECKSUM	pds:File_Area_Observational/pds:File/pds:md5_checksum

Label Mapping Tool

What does it do?

Aids developers performing PDS3 to PDS4 archive conversions.

 Helps ensure that all keywords from the original metadata are captured in the PDS4 label.

Provides mappings where needed:

- Mission Software Interface Specification (SIS) documents
- PDS Label Assistant for Interactive Design (PLAID) software
- PDS Image Atlas web search

How does it work?

- Leverages the effort already invested to develop Velocity Template for a mission/instrument.
- Parses PDS3 label to extract keywords.
- Parses Velocity Template using *lxml* Python library.
- Iterates over XML elements, looking for references to variables that match the PDS3 keywords.
- Pairs matching keywords & XPaths into a CSV.

Label Mapping Tool: the Future

Open source release

Develop new pipeline to take in LMT output and:

- Generate Property Maps
- Generate Terminological Entry data
- Build database of mappings from PDS3 keywords to:
 - PDS4 XPaths
 - Mission-specific nuances for attribute/class definitions
 - VICAR keyword/group
 - Etc.
- Provide PDS4 JSON snippets via web service

PDS Resources

Tools

- Generate Tool
 - https://pds.jpl.nasa.gov/pds4/software/generate/
 - For more info, stop by my poster in this afternoon's session.
- PLAID
 - https://plaid.jpl.nasa.gov/

Documentation

- PDS4 Training
 - https://pds.jpl.nasa.gov/pds4/training/
- Data Provider's Handbook
 - https://pds.jpl.nasa.gov/pds4/doc/dph/

Credits & References

Credits

- Jordan Padams, for training me on all things PDS.
- Steve Hughes & Bob Deen, for helping to design the future of LMT.
- Joe Mafi, for the PDS intro slides.

References

- 1. NASA Jet Propulsion Laboratory. (2018) *What is PDS4?* Retrieved from https://pds.jpl.nasa.gov/pds4/about/what.shtml .
- 2. "Text-xml" by RRZEicons is licensed under CC BY 2.0. https://commons.wikimedia.org/wiki/File:Textxml.svg.
- 3. "Text-txt" by RRZEicons is licensed under CC BY 2.0. https://commons.wikimedia.org/wiki/File:Text-xml.svg.
- 4. The Apache Software Foundation. (2016) *The Apache Velocity Project*. Retrieved from http://velocity.apache.org.

jpl.nasa.gov